We explore unifying a neural segmenter with two-pass cascaded encoder ASR into a single model. A key challenge is allowing the segmenter (which runs in real-time, synchronously with the decoder) to finalize the 2nd pass (which runs 900 ms behind real-time) without introducing user-perceived latency or deletion errors during inference. We propose a design where the neural segmenter is integrated with the causal 1st pass decoder to emit a end-of-segment (EOS) signal in real-time. The EOS signal is then used to finalize the non-causal 2nd pass. We experiment with different ways to finalize the 2nd pass, and find that a novel dummy frame injection strategy allows for simultaneous high quality 2nd pass results and low finalization latency. On a real-world long-form captioning task (YouTube), we achieve 2.4% relative WER and 140 ms EOS latency gains over a baseline VAD-based segmenter with the same cascaded encoder.
translated by 谷歌翻译
Self-supervised pre-training of a speech foundation model, followed by supervised fine-tuning, has shown impressive quality improvements on automatic speech recognition (ASR) tasks. Fine-tuning separate foundation models for many downstream tasks are expensive since the foundation model is usually very big. Parameter-efficient fine-tuning methods (e.g. adapter, sparse update methods) offer an alternative paradigm where a small set of parameters are updated to adapt the foundation model to new tasks. However, these methods still suffer from a high computational memory cost and slow training speed because they require backpropagation through the entire neural network at each step. In the paper, we analyze the performance of features at different layers of a foundation model on the speech recognition task and propose a novel hierarchical feature fusion method for resource-efficient transfer learning from speech foundation models. Experimental results show that the proposed method can achieve better performance on speech recognition task than existing algorithms with fewer number of trainable parameters, less computational memory cost and faster training speed. After combining with Adapters at all layers, the proposed method can achieve the same performance as fine-tuning the whole model with $97\%$ fewer trainable encoder parameters and $53\%$ faster training speed.
translated by 谷歌翻译
语言识别对于自动语音识别(ASR)中的许多下游任务至关重要,并且有益于将多语言端到端的ASR集成为附加任务。在本文中,我们建议通过集成每帧语言标识符(LID)预测器来修改基于层压编码器的复发神经网络传感器(RNN-T)模型的结构。带有级联编码器的RNN-T可以使用不右键的第一通用解码来实现较低延迟的流动ASR,并使用二频道解码使用更长的右文本实现较低的单词错误率(WERS)。通过利用当前文章中的这种差异和统计池的流传输实现,该建议的方法可以实现准确的流盖预测,而几乎没有额外的测试时间成本。语音搜索数据集的实验结果具有9个语言语言位置,表明所提出的方法平均达到96.2%的盖子预测准确性,而与输入中的Oracle盖相同的二次通用方法。
translated by 谷歌翻译
设备的端到端(E2E)模型已显示出对质量和延迟的英语语音搜索任务的常规模型的改进。 E2E模型还显示了多语言自动语音识别(ASR)的有希望的结果。在本文中,我们将以前的容量解决方案扩展到流应用程序,并提出流媒体多语言E2E ASR系统,该系统在设备上完全运行,质量和延迟与单个单语言模型相当。为了实现这一目标,我们提出了一个编码器端量模型和一个终端(EOU)联合层,以提高质量和延迟权衡。我们的系统以语言不可知论的方式构建,允许它实时支持本条件的代码切换。为了解决大型模型的可行性问题,我们进行了设备分析,并用最近开发的嵌入解码器代替了耗时的LSTM解码器。通过这些更改,我们设法在不到实时的时间内在移动设备上运行了这样的系统。
translated by 谷歌翻译
在启用语音的应用程序中,一个预定的热词在同时用来激活设备以便进行查询。 toavoid重复一个热词,我们提出了一个端到端的流(E2E)打算查询检测器,该查询检测器识别向设备指向的发音,并滤除针对设备的其他发出内容。提出的方法将预期的查询检测器置于E2E模型中,该模型将语音识别的不同组件折叠成一个神经网络。E2E对台面解码和预期的查询检测进行建模,也使我们可以基于早期的部分偏置检测结果, ,这对于减少潜伏期和使系统响应很重要。我们证明,与独立的预期检测器相比,检测准确性和600个MSLATENCE的相对相对改善的相对提高一级误差率(EER)的相对提高了22%。在我们的实验中,提出的模型检测用户正在用用户开始讲话后,用8.7%的Eerwithin与设备进行对话。
translated by 谷歌翻译
尽管流媒体助手系统已在许多应用中使用,但该系统通常集中于不自然的单次交互,假设来自单个语音查询的输入毫不犹豫地或不足。但是,除了反弹之外,常见的对话说法通常涉及多个转弯的查询。这些疏远包括暂停思考,犹豫,延长单词,填补的停顿和重复的短语。这使得通过对话演讲进行语音识别,其中包括有多个查询,这是一项具有挑战性的任务。为了更好地建模对话互动,至关重要的是,歧视汇率和查询的结束至关重要,以使用户能够在用户完成时,同时使系统尽快做出响应,以使用户保持地板的折衷。在本文中,我们提出了一个基于端到端(E2E)语音识别器的转折预测指标。我们的最佳系统是通过共同优化ASR任务并检测用户何时停止思考或完成口语来获得的。所提出的方法显示,在预测真正的转弯率的97%以上的召回率和85%的精度率中,在设计集中仅100毫秒延迟,设计了4种类型的对话说法中插入4种散布。
translated by 谷歌翻译
由于无标记的文本和语音数据的广泛可用性,最近基于仅音频数据的仅文本和半监督培训已广受欢迎。在这项工作中,我们建议将纯文本和半监督培训纳入基于注意力的审议模型。通过将纯文本数据合并到培训审议文本编码器的变压器(BERT)的双向编码器表示中,以及使用联合声学和文本解码器(JATD)和半诉讼程序的大规模文本到语音和纯音频和音频话语培训,与基线审议相比,我们的各种任务减少了4%-12%。与最先进的语言模型(LM)纠正方法相比,审议模型将Google语音搜索降低了11%。我们表明,与具有合理的终端潜伏期的最先进的LM委员相比,审议模型还获得了正面的人类并排评估。
translated by 谷歌翻译
语言模型(LMS)显着提高端到端模型(E2E)模型在训练过程中很少见的单词的识别准确性,当时在浅融合或重新恢复设置中。在这项工作中,我们介绍了LMS在判别培训框架中学习混合自动回旋传感器(HAT)模型的研究,以减轻有关使用LMS的训练与推理差距。对于浅融合设置,我们在假设生成和损失计算过程中都使用LMS,而LM感知的MWER训练模型可实现10 \%的相对改进,比用标准MWER在语音搜索测试集中培训的模型相对改进,其中包含稀有单词。对于重新设置,我们学会了一个小型神经模块,以数据依赖性方式产生串联的融合权重。该模型与常规MWER训练的模型相同,但无需清除融合重量。
translated by 谷歌翻译
在本文中,我们提出了一个动态的级联编码器自动语音识别(ASR)模型,该模型统一了不同部署方案的模型。此外,该模型可以显着降低模型尺寸和功耗而不会损失质量。也就是说,使用动态级联编码器模型,我们探索了三种技术,以最大程度地提高每个模型大小的性能:1)在共享编码器时为每个子模型使用单独的解码器;2)使用漏斗 - 提高编码器效率;3)平衡因果关系的大小,以提高质量和适合部署限制。总体而言,与基线级联编码器模型相比,拟议的大中等模型的尺寸较小30%,并将功耗降低了33%。统一大型,中和小型模型的三重大小模型可实现37%的总尺寸减少,而质量损失最小,同时大大减少了拥有单独模型的工程工作。
translated by 谷歌翻译
最先进的自动语音识别(ASR)系统经过数以万计的标记语音数据训练。人类转录很昂贵且耗时。诸如转录的质量和一致性之类的因素可以极大地影响使用这些数据训练的ASR模型的性能。在本文中,我们表明我们可以通过利用最近的自学和半监督学习技术来培训强大的教师模型来生产高质量的伪标签。具体来说,我们仅使用(无监督/监督培训)和迭代嘈杂的学生教师培训来培训6亿个参数双向教师模型。该模型在语音搜索任务上达到了4.0%的单词错误率(WER),比基线相对好11.1%。我们进一步表明,通过使用这种强大的教师模型来生成用于训练的高质量伪标签,与使用人类标签相比,流媒体模型可以实现13.6%的相对减少(5.9%至5.1%)。
translated by 谷歌翻译